CD80 potentiometric output - Measurement range 0 up to 2000 mm

Specifications:

Cable diameter

Measurement range 0 up to 2000 mm

Output signal $1k\Omega$ potentiometer (other values on demand) Resolution Quasi infinite (depends on the operating system)

Material Body and cover - Aluminium (RohS) Measuring cable - Stainless steel

Detection element Multi-turn Hybrid potentiometer Connection Male connector M16 - DIN 3 pin Male connector M12 – 4 pin

PVC cable - 4 wires

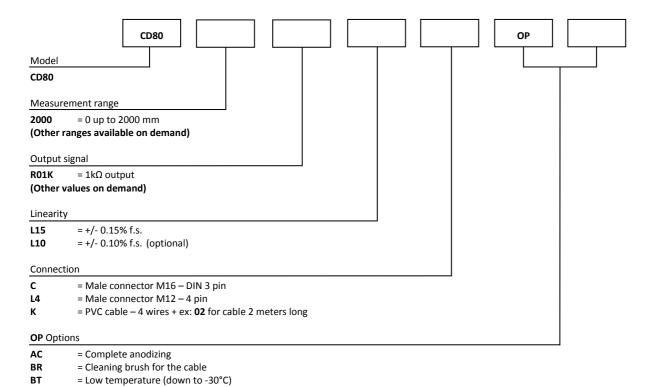
Standard linearity +/- 0,15% f.s.

+/- 0,10% f.s. (optional)

Protection class IP54 (option IP67)

Max. Velocity 10 m/s

8 m/s² (before cable deformation) Max. Acceleration


Weight ≈ 1500 g -20° to +80°C Operating temperature Storage temperature -30° to +80°C

Cable forces:

Measurement range in mm	Min. pull-out force	Max. pull-out force
2000	≈ 8,00 N	≈ 11,00 N

Ordering reference:

Reference example: CD80-2000-R01K-L15-K02-OP-AC-EM

= Protection class IP67

= Water evacuation holes

= Fixing of the measuring cable with a clevis

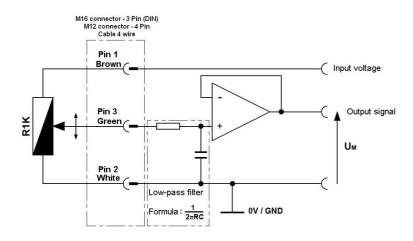
= Fixing of the measuring cable with a M4 threaded rod

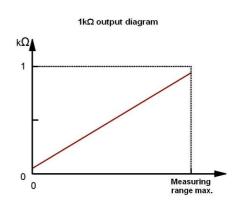
= Fixing of the measuring cable with a clip

CP

EM

IP67

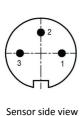

M4 TEV

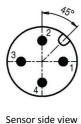

Electrical characteristics:

 $\underline{\textbf{Potentiometric version 1 K} \Omega:} \text{ (other values on demand)}$

Temperature drift+/-50 ppm/°C

Example of wiring diagram with input stage:

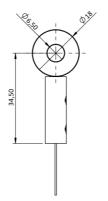




To ensure a good linearity, wire the potentiometer as a voltage divider and never as a rheostat. The input resistance of the operating system must be very high (greater than $10 M\Omega$)

Connection:

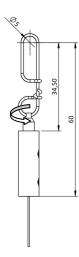
Male connector M16 3 pin (DIN)	Male connector M12 4 pin (DIN)	PVC cable 4 wire	R01K
1	1	Brown	Input voltage +
2	2	White	Input voltage GND
3	3	Green	Signal +
	dra		



Options:

Cable attachment with a lug:

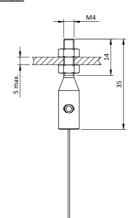
Standard


The attachment lug is fixed with a M6 screw or a clevis.

Cable attachment with a clip:

OP-EM

This fastening system allows a rotation about its axis.
The clip is fixed with a M4 screw or a clevis.


Cable attachment fitted with a M4 threaded rod:

OP-M4

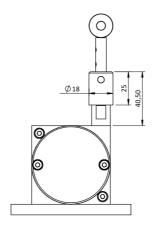
The rod attachment uses a threaded rod with 2 nuts (provided). The required thickness of the plate does not exceed 5 mm.

Caution


Never screw the threaded rod into a fixed nut, a twist of the measurement cable would damage it.

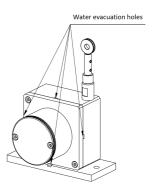
Cable attachment with a clevis:

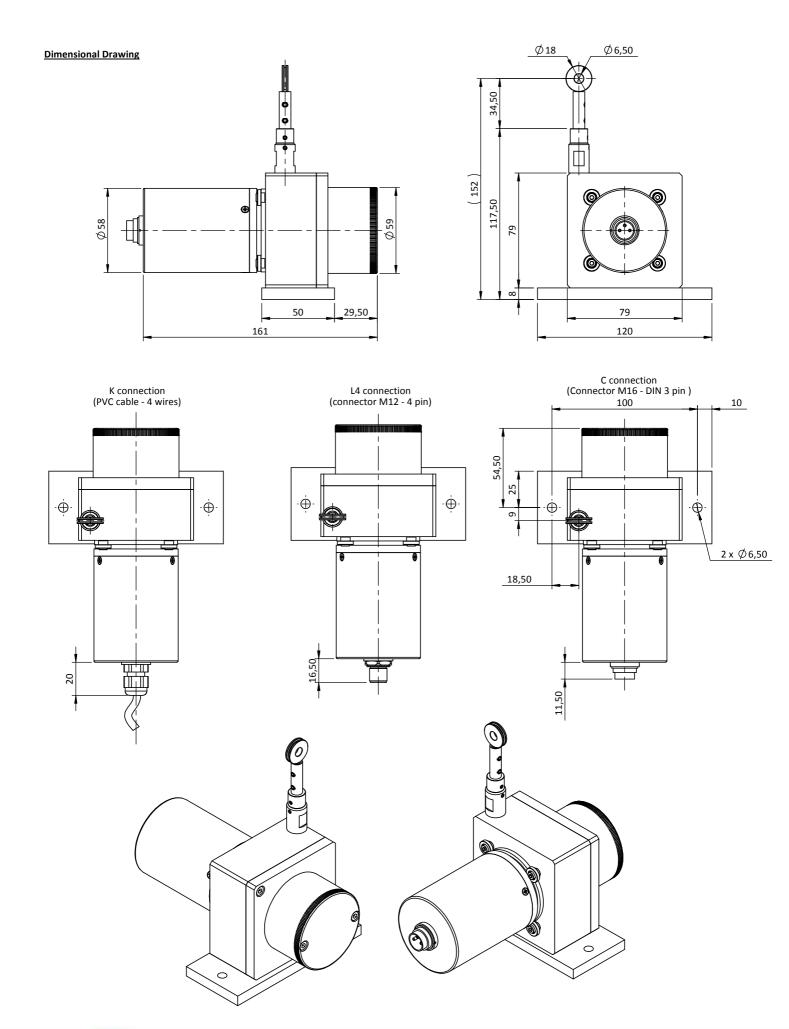
OP-CP


The attachment of the clevis is done using a pin (provided).

Cable cleaning brush:

OP-BR


The cleaning brush wipes the cable in dusty or humid environments.



Water evacuation holes:

OP-TEV

The holes allow the natural flow of fluids out of the sensor in order to avoid their accumulation in the system.

